Suppression of Par-4 protects human renal proximal tubule cells from apoptosis induced by oxidative stress.

نویسندگان

  • Bin Sun
  • Chao Lu
  • Guo-Ping Zhou
  • Chang-Ying Xing
چکیده

BACKGROUND Oxidative stress is an important inducer of cell apoptosis and plays a key role in the development of renal inflammation. The prostate apoptosis response factor-4 (Par-4) gene was originally identified in prostate cells undergoing apoptosis. Subsequently, Par-4 was found to possess potent pro-apoptotic activity in various cellular systems. However, it remains unclear whether Par-4 is involved in oxidant injury of renal tubular epithelial cells. AIMS To determine the role of Par-4 in renal proximal tubular cell apoptosis induced by oxidative stress. METHODS Par-4 gene expression was silenced by small interfering RNA. Renal proximal tubular cells were then exposed to hydrogen peroxide and the effect of Par-4 silencing on apoptosis and expression of phosphorylated Akt and vascular endothelial growth factor was determined. RESULTS Hydrogen peroxide induced apoptosis and increased Par-4 expression in human renal proximal tubular epithelial cells. Par-4 silencing significantly protected renal proximal tubular cells from apoptosis via activating the PI3K/Akt signaling pathway as Akt phosphorylation was enhanced. Par-4 silencing also ameliorated the downregulation of vascular endothelial growth factor expression induced by oxidative stress. CONCLUSION Par-4 gene silencing resulted in PI3K/Akt signaling-dependent inhibition of renal proximal tubular cell apoptosis following oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Par-4 Protects Human Renal Proximal Tubule Cells from Apoptosis Induced by Oxidative Stress

Background: Oxidative stress is an important inducer of cell apoptosis and plays a key role in the development of renal inflammation. The prostate apoptosis response factor-4 (Par-4) gene was originally identified in prostate cells undergoing apoptosis. Subsequently, Par-4 was found to possess potent pro-apoptotic activity in various cellular systems. However, it remains unclear whether Par-4 i...

متن کامل

Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload

Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflamm...

متن کامل

Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells

Objective(s): Neurodegenerative diseases have been associated with glutamatergic dysfunction. Berberine, an isoquinoline alkaloid broadly present in different medicinal herbs, has been reported to have neuroprotective effect. In the present study, the effects of berberine against glutamate-induced oxidative damage and apoptosis were investigated. Materials and Methods: The cultured PC12 and N2a...

متن کامل

The Hydroalcoholic Extract of Saffron Protects PC12 Cells against Aluminum-Induced Cell Death and Oxidative Stress in Vitro

Background: Aluminum (Al) exposure is among the environmental risk factors that may involve in the pathogenesis of neurodegenerative diseases. Oxidative stress has a critical role in the Al-induced toxicity. Saffron is a plant with potent radical scavenging and anti-oxidative properties. This investigation was designed to evaluate the possible protective effects of saffron extract (SE) on alumi...

متن کامل

Sulodexide Protects Renal Tubular Epithelial Cells from Oxidative Stress-Induced Injury via Upregulating Klotho Expression at an Early Stage of Diabetic Kidney Disease

The hypoalbuminuric effect of sulodexide (SDX) on diabetic kidney disease (DKD) was suggested by some clinical trials but was denied by the Collaborative Study Group. In this study, the diabetic rats were treated with SDX either from week 0 to 24 or from week 13 to 24. We found that 24-week treatment significantly decreased the urinary protein and HAVCR1 excretion, inhibited the interstitial ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephron. Experimental nephrology

دوره 117 3  شماره 

صفحات  -

تاریخ انتشار 2011